
TECHNICAL DATA SHEET

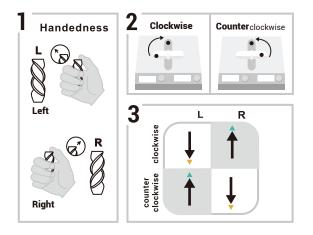
PRODUCT SPECIFICATION

Flow movement	Hybrid axial/radial		
Flow direction	Down		
Weight	11.70 ± 0.25 g		
Viscosity range	1-205 cP		
RPM range	100-1100 RPM		
Volume range	250-2000 mL		
Dimension	Ø 40 x 16 mm		

SDA-02

HIGH SHEAR DESIGN

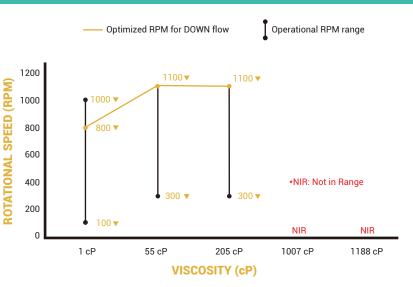
Utilized in emulsion and dispersion processes of :


- Emulsion and suspension polymerization
- Cosmetic creams, ceramic slurries, and polishing compounds
- Conductive inks and nanoparticle suspensions

MATERIAL TECHNICAL DATA

Shell material	polyethylene naphthalate (PEN) 🏠
Application temperature	-60 to 155°C
Color	white
Coefficient of friction	0.12
Hydrolysis resistance	200 hours
Compliance	FDA food contact, USP <87>
Magnet material	SmCo permanent
Remanence (Br)	9,800~11,000 Gs
Sterilization	gamma, steam, EtOH

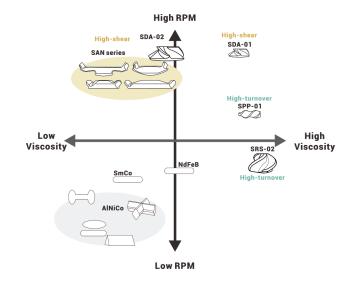
FLOW DIRECTION SETTING


The up/down flow direction depends on the spin direction of the plate and the handedness of the product.

PRODUCT HIGHLIGHT

PFAS FREE	Shell made of PEN to reduce our dependency on PTFE & PFAS
	Food contact safe
USD < 87 >	No cell toxicity, bio-inert
ROHS2 2011/65/EU	Non-hazardous materials
5°CO2	Estimated carbon footprint of PEN is $3.4 \text{ kg CO}_2 \text{ eq/kg}$
	Recyclable with PET bottle

RECOMMENDED OPERATING RANGE


CHEMICAL RESISTANCE CHART

	PEN	PVDF	PTFE
Acetic acid (10%)	А	А	А
Acetic acid (40%)	А	А	А
Acetone	В	D	А
Ammonium chloride (25%)	А	Α	А
Benzene	В	А	А
Chloroform	С	Α	А
Cyclohexane	Α	Α	А
Cyclohexanol	Α	Α	А
Calcium chloride (10%)	А	А	А
Chromic acid (10%)	Α	Α	А
Citric acid	Α	Α	А
Diethyl ether	А	Α	А
Dimethyl sulfoxide (DMSO)	С	С	А
Dimethyl formamide (DMF)	С	D	А
Ethanol	Α	Α	А
Ethyl acetate	А	D	А
Ethylene diamine	С	В	А
Ethylene glycol	Α	Α	А
Formaldehyde (40%)	Α	Α	А
Formic acid (10%)	А	Α	А
Formic acid (30%)	С	В	А
Gasoline	А	А	А
Glycerol	А	Α	А
Heptane	Α	Α	А
Hexane	Α	Α	А
Hydrobromic acid (10%)	Α	Α	А
Hydrobromic acid (47%)	Α	Α	А
Hydrochloric acid (10%)	Α	Α	А
Hydrochloric acid (37%)	А	Α	А
Hydrofluoric acid (5%)	А	Α	А
Hydrofluoric acid (50%)	D	В	А

PVDF PFN PTFE Hydrogen peroxide (30%) А А А Isopropyl alcohol (IPA) А А А Methanol А А А Methyl ethyl ketone (MEK) А D А Nitric acid (10%) А А А Nitric acid (20%) А А А Nitric acid (67%) D А А Phosporic acid (10%) А В А Phosphoric acid (85%) D В А Potassium hydroxide (10%) А А А Potassium hydroxide (30%) В А А Sulfuric acid (10%) А А А Sulfuric acid (30%) С А А Sulfuric acid (>80%) D А А Sodium acetate (40%) sol. А А А Sodium chloride (sat.) (32%) А А А Sodium bicarbonate (sat.) А А А Sodium hydroxide (10%) sol. А А А Sodium hydroxide (30%) sol. С Α Α Sodium hypochlorite А А А Styrene (monomer) А А А Tetrahydrofuran (THF) B B А Toluene А А А Triethanolamine С А А Vinyl chloride (monomer) А А А Xylene Α А А Resistance at 23°C, immersed for 30 days Ranking definition: A: weight change <1%, tensile > 95% B: weight change between 1~10%, tensile > 75% C: weight change >10%, tensile <75% D: dissolved or swelled

SELECTION MATRIX

type of magnetic stir bars categorized by performance toward various speeds and viscosities.

PRECAUTION

Hazard Identification:

Not classified as hazardous according to OSHA or GHS regulations. Avoid exposure to DMSO, DMF, CHCl_a, CCl_a, and HF.

Check compatibility:

Use chemical resistance chart as a reference.

Conditions to Avoid:

Temperatures above 160°C.

Storage:

Magnetic stir bars should be stored in pairs to maintain their magnetic strength, away from steel or iron surfaces and other magnetic fields. Keep them at ambient temperatures to avoid thermal stress, and handle carefully to prevent mechanical damage.

Disposal Considerations:

PEN (Polyethylene Naphthalate) can be recycled alongside PET (Polyethylene Terephthalate). Recycled as much as possible with PET or through incineration.

FLXR Engineering Co., Ltd.

♀ 1F & 2F, 11 - 1 Wuquan 1st Rd., Xinzhuang Dist., New Taipei City, Taiwan 24892
↓ +886-2-2290-1122
₣ +886-2-2299-5222
♣ hello@flxr.engineering

