

CFD-optimized mixing for complex liquids at lab scale

FLXR Engineering Co., Ltd.

♀ 1F & 2F, 11 - 1 Wuquan 1st Rd., Xinzhuang Dist., New Taipei City, Taiwan 24892 **** +886-2-2290-1122 **f** +886-2-2299-5222 **m** hello@flxr.engineering

A word from FLXR

Our Passion: Our focus is on simplifying lab work for scientists through the use of 3D printing, making processes easier and more efficient.

Our Mission: We aim to advance scientific progress while ensuring environmental responsibility is a core part of our work.

The world's first CFD-optimized stir bar

High Turnover Design (SRS)

CFD-optimized HIGH-TURNOVER:

- Higher vorticity and power number
- Fluid adaptive hybrid radial/axial flow
- Bi-directional design for diverse viscosity (1 – 1,500 cP)

High Shear Design (SDA)

CFD-optimized HIGH-SHEAR:

- Engineered to achieve higher shear rates
- Generates large velocity gradients between fluid layers
- Able to achieve droplet size of 40 to 60 µm

Conventional Rod

CFD of Conventional Rod:

- Radial only flow pattern
- Works well for low-viscosity fluids
- Emulates straight paddle impeller

A more eco-friendly alternative to PTFE

Shell Material Options

- PEN (polyethylene naphthalate) a new, recyclable, and PFAS-free material choice
 - Highly chemical resistant, though not as perfect as PTFE
- PEEK (polyether ether ketone)
 also available
- PTFE concerns:
 - Though inert, manufacturing and disposal extremely toxic
 - Incineration by-products 7,000x more potent than CO₂ and do not decompose

Made by 3D-Printing

- Able to manufacture complex geometries to optimize fluid dynamics for the application
- 3D printing enables design iteration of stir bars, evolving with user feedback
- Offer shapes and sizes of stir bar from 5 mm to 250 mm in diameter
- Additive manufacturing reduces material waste and energy consumption

Strong SmCo Magnet

- 4X stronger coupling strength than standard AlNiCo to ensure strong coupling
- Improved temperature stability (-273°C to 300°C) compared to NdFeB magnetics which are stable up to 80°C
- Highest resistance to demagnetization (coercivity) vs. AlNiCo and NdFeB for consistent coupling over product lifecycle

High-shear design

- Reference impeller: Cowl disk
- Applications: Emulsion and suspension polymerization; cosmetic creams, ceramic slurries, and polishing compounds; conductive inks and nanoparticle suspensions

Product	SAN		SDA	
Flow movement	Hybrid axial/radial	<i>1</i> ¹ / ₂	Hybrid axial/radial	
Flow direction	Down	H	Down	H
Weight	01 8.00 ± 0.25 g 02 8.10 ± 0.25 g 31 6.90 ± 0.25 g 32 12.40 ± 0.25 g	Preferred vessel	01 4.90 ± 0.25 g 02 11.70 ± 0.25 g	Ø Preferred vessel
Viscosity range	1-200 cP		1-200 cP	
RPM range	200-1400 RPM	01, 02 31, 32	200-1400 RPM	
Dimension	L(mm) x W(mm) x H(mm)		Ø(mm) x H(mm)	
	01 40 x 13 x 15	02 55 x 13 x 15	01 17 x 12	
	31 39 x 13 x 9	32 57 x 13 x 9	02 40 x 16	

High-turnover design

Reference impeller: Pitched-blade paddle

• Applications: Solid catalysts; powder in resins, paints, and creams; powdered flocculants

Product	SRS		SPP		
Flow movement	Hybrid axial/radial		Hybrid axial/radial		
Flow direction	Up/Down	H	Up/Down	Н	
Weight	6.20 ± 0.25 g	Ø Preferred vessel	1.30 ± 0.25 g	Ø Preferred vessel	
Viscosity range	1-1500 cP	Therefred vessel	1-1500 cP	Freieneu vesset	
RPM range	100 –1100 RPM		100-1100 RPM		
Dimension	Ø(mm) x H(mm)				
	28 x 19		9 x 25		

• Applications: Additives in paints, resins, and adhesives, reduce the use of defoaming agent

Product	Baffled beaker				
Volume	500 mL	750 mL	1000 mL	2000 mL	
Diameter	87 mm	100 mm	109 mm	139 mm	
Height	113 mm	130 mm	143 mm	180 mm	
Baffle width	17 mm	20 mm	22 mm	28 mm	
Baffled beaker thickness	1.3 mm	1.3 mm	1.3 mm	1.3 mm	
Weight	61.60 ± 2.00 g	70.50 ± 2.00 g	100.70 ± 2.00 g	188.50 ± 2.00 g	

Recommended geometric proportions

Impeller diameter / Baffled beaker diameter = 0.30 ~ 0.50

Liquid height / Baffled beaker diameter = 1

Clearance of the impeller from the bottom of the baffled beaker / Baffled beaker diameter = $0.30 \sim 0.50$

Emulsion Droplet-size Experiment

- After 31 minutes, SDA produced 367% smaller droplets than the double-ended conventional stir bar.
- High shear is a crucial feature in determining quality of emulsion.

Au Nanoparticle Synthesis

- The gold nanoparticle produced by high turnover SPP-01 is 41% smaller than those of a conventional rod stir bar.
- The higher vorticity and turbulence of the SPP-01 reduced particle agglomeration.

Defoaming Time Experiment

- 800 mL of a 1,345 cP liquid was stirred using a pitch-blade impeller at 1,100 RPM in baffled vs. standard beakers.
- The baffled beaker defoamed approximately 2x faster than the standard beaker, reducing the cycle time and dosage of defoaming agent used.

Chemical resistance

	PEN	PVDF	PTFE
Acetic acid (10%)	Α	Α	Α
Acetic acid (40%)	Α	Α	Α
Acetone	В	D	Α
Ammonium chloride (25%)	Α	Α	Α
Benzene	В	Α	Α
Chloroform	С	Α	Α
Cyclohexane	Α	Α	Α
Cyclohexanol	Α	Α	Α
Calcium chloride (10%)	Α	Α	Α
Chromic acid (10%)	Α	Α	Α
Citric acid	Α	Α	Α
Diethyl ether	Α	Α	Α
Dimethyl sulfoxide (DMSO)	С	С	Α
Dimethyl formamide (DMF)	С	D	Α
Ethanol	Α	Α	Α
Ethyl acetate	Α	D	Α
Ethylene diamine	С	В	Α
Ethylene glycol	Α	Α	Α
Formaldehyde (40%)	Α	Α	Α
Formic acid (10%)	Α	Α	Α
Formic acid (30%)	С	В	Α
Gasoline	Α	Α	Α
Glycerol	Α	Α	Α
Heptane	Α	Α	Α
Hexane	Α	Α	Α
Hydrobromic acid (10%)	Α	Α	Α
Hydrobromic acid (47%)	Α	Α	Α
Hydrochloric acid (10%)	Α	Α	Α
Hydrochloric acid (37%)	Α	Α	Α
Hydrofluoric acid (5%)	Α	Α	Α
Hydrofluoric acid (50%)	D	В	Α

Chemical resistance					
	PEN	PVDF	PTFE		
Hydrogen peroxide (30%)	Α	Α	Α		
Isopropyl alcohol (IPA)	Α	Α	Α		
Methanol	Α	Α	Α		
Methyl ethyl ketone (MEK)	Α	D	Α		
Nitric acid (10%)	Α	Α	Α		
Nitric acid (20%)	Α	Α	Α		
Nitric acid (67%)	D	Α	Α		
Phosporic acid (10%)	Α	В	Α		
Phosphoric acid (85%)	D	В	Α		
Potassium hydroxide (10%)	Α	Α	Α		
Potassium hydroxide (30%)	В	Α	Α		
Sulfuric acid (10%)	Α	Α	Α		
Sulfuric acid (30%)	С	Α	Α		
Sulfuric acid (>80%)	D	Α	Α		
Sodium acetate (40%) sol.	Α	Α	Α		
Sodium chloride (sat.) (32%)	Α	Α	Α		
Sodium bicarbonate (sat.)	Α	Α	Α		
Sodium hydroxide (10%) sol.	Α	Α	Α		
Sodium hydroxide (30%) sol.	Α	С	Α		
Sodium hypochlorite	Α	Α	Α		
Styrene (monomer)	Α	Α	Α		
Tetrahydrofuran (THF)	В	В	Α		
Toluene	Α	Α	Α		
Triethanolamine	С	Α	Α		
Vinyl chloride (monomer)	Α	Α	Α		
Xylene	Α	Α	Α		

Resistance at 23 °C, immersed for 30 days Ranking definition:

A: weight change < 1%, tensile > 95% B: weight change between 1 ~ 10%, tensile > 75%

C: weight change > 10%, tensile < 75% D: dissolved or swelled

Application

Pharmaceutical

Paint

8 Analytical chemistry

<u> 11111111</u> -tro Electronic

盈豐材料股份有限公司

♥新北市新莊區五權一路11之1號(1、2樓)

hello@flxr.engineering

industry